Закон малых чисел
Закон малых чисел
Мое сотрудничество с Амосом в 1970-е годы началось с дискуссии об утверждении, что люди обладают интуитивным статистическим чутьем, даже если их статистике не обучали. На семинаре Амос рассказал нам об исследователях из Мичиганского университета, которые в целом оптимистично относились к интуитивной статистике. Меня эта тема очень волновала по личным причинам: незадолго до того я обнаружил, что я — плохой интуитивный статистик, и мне не верилось, что я хуже других.
Для психолога-исследователя изменчивость выборки — не просто странность, это неудобство и помеха, которая дорого обходится, превращая любое исследование в игру случая. Предположим, вы хотите подтвердить гипотезу, что словарный запас шестилетних девочек в среднем больше, чем словарный запас мальчиков того же возраста. В объеме всего населения гипотеза верна, у девочек в шесть лет словарный запас в среднем больше. Однако девочки и мальчики бывают очень разными, и можно случайно выбрать группу, где заметной разницы нет, а то и такую, где мальчики набирают больше баллов. Если вы — исследователь, такой результат вам дорого обойдется, поскольку, потратив время и усилия, вы не подтвердите правильность гипотезы. Риск снижается только использованием достаточно большой выборки, а те, кто работает с маленькими выборками, отдают себя на волю случая.
Риск ошибки в каждом эксперименте оценивается при помощи довольно простой операции, однако психологи не пользуются вычислениями для определения размера выборки, а принимают решения в соответствии с собственным, зачастую ущербным, пониманием. Незадолго до дискуссии с Амосом я прочитал статью, прекрасно иллюстрирующую типичные ошибки исследователей. Автор отмечал, что психологи сплошь и рядом используют настолько маленькие выборки, что рискуют не подтвердить верные гипотезы с вероятностью 50 %[119]! Ни один разумный исследователь не примет такой риск. Правдоподобным объяснением казалось то, что решения психологов относительно размера выборок отражали господствующие интуитивные заблуждения о диапазоне изменчивости.
Меня поразили содержащиеся в статье объяснения, проливающие свет на проблемы с моими собственными исследованиями. Как и большинство психологов, я постоянно использовал слишком маленькие выборки и часто получал бессмысленные, странные результаты, оказывавшиеся артефактами, которые порождал сам метод моих исследований. Мои ошибки были тем постыднее, что я преподавал статистику и умел вычислять размер выборки, необходимый для снижения риска неудачи до приемлемого уровня. Но я никогда этим не занимался при планировании экспериментов и, подобно другим исследователям, верил традиции и собственной интуиции, не задумываясь о проблеме всерьез. К моменту, когда Амос посетил мой семинар, я уже осознал, что моя интуиция не работает, а во время самого семинара мы быстро пришли к выводу, что ошибаются и оптимисты из Мичиганского университета.
Мы с Амосом решили выяснить, есть ли среди исследователей такие же наивные глупцы, как я, и допускают ли те же ошибки ученые, обладающие математическими знаниями. Мы разработали опросник с описанием реалистичных исследований и успешных экспериментов. Опрашиваемые должны были определить размеры выборок, оценить связанные с этими решениями риски и дать советы гипотетическим аспирантам, планирующим научно-исследовательскую работу. На конференции Общества математической психологии Амос провел опрос присутствующих (включая авторов двух учебников по статистике). Результаты оказались очевидны: я был не одинок. Почти все респонденты повторили мои ошибки. Выяснилось, что даже эксперты недостаточно внимательны к размеру выборки.
Первая статья, написанная мной в соавторстве с Амосом, называлась «Вера в закон малых чисел»[120]. В ней шутливо пояснялось, что «…интуитивная оценка размера случайных выборок, похоже, удовлетворяет закону малых чисел, гласящему, что закон больших чисел с тем же успехом применим и к малым». Также мы включили в статью настойчивую рекомендацию для исследователей относиться к своим «статистическим предчувствиям с недоверием и при любой возможности заменять впечатления вычислениями».
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Последний жизненный закон Закон о смысле жизни
Последний жизненный закон Закон о смысле жизни Мы пришли от первого закона – Закона пустоты – к Закону о смысле жизни.Мы идем от одиночества к воссоединению с другими и снова к одиночеству.Мы приходим из пустоты, пытаясь обрести смысл жизни, и вновь уходим в
Методика «Расстановка чисел»
Методика «Расстановка чисел» Рекомендуется использовать методику при профотборе на специальности, требующие хорошего развития функции внимания. Применяется для обследования подростков и взрослых. Цель: предназначена для оценки произвольного внимания.Инструкция. За
4.4 Преобразование чисел в образы
4.4 Преобразование чисел в образы Любые числовые сведения перед запоминанием необходимо преобразовать в зрительные образы. Это осуществляется с помощью буквенно-цифрового кода. По буквам, соответствующим определенным цифрам, подбирается слово, которое рефлекторно
Почему маленькие филиалы нарушают общий порядок Закон малых чисел
Почему маленькие филиалы нарушают общий порядок Закон малых чисел Вы руководите концерном, имеющим тысячу филиалов. По поручению финансового директора эксперт провел исследование на неприятную тему «Магазинная кража». На огромном табло красуются сто наименований
Закон малых чисел
Закон малых чисел Мое сотрудничество с Амосом в 1970-е годы началось с дискуссии об утверждении, что люди обладают интуитивным статистическим чутьем, даже если их статистике не обучали. На семинаре Амос рассказал нам об исследователях из Мичиганского университета, которые
Разговоры о законе малых чисел
Разговоры о законе малых чисел «Да, с приходом нового директора студия сняла три успешных фильма, но еще слишком рано говорить, что у него легкая рука».«Я не поверю, что новый трейдер — гений, пока не посоветуюсь со статистиком, способным оценить вероятность того, что эти
9. Мир в малых дозах
9. Мир в малых дозах Если вы прислушаетесь к какой-нибудь философской дискуссии, то увидите, что люди используют множество слов в попытке определить, что такое реальное и нереальное. Один скажет, что реальное — это то, к чему мы можем прикоснуться, что можем увидеть и
Рутина «Угадывание чисел»
Рутина «Угадывание чисел» Игровая рутина для создания игрового состояния и дальнейшего развития коммуникации.Ты: Загадай число от 1 до 4. Только не говори мне его. Загадала? Девушка: Да...Ты: Теперь в своем воображении нарисуй его на черной доске белым мелом... Нарисовала?
Расшифровка чисел
Расшифровка чисел Число 1. Люди числа 1 честолюбивы, они не любят ограничений, всегда стараются вырваться наверх, в чем бы ни заключалась их профессия или занятие. Они желают стать лидерами. Они «ставят» себя и умеют заставить подчиненных смотреть на себя с почтением, имеют
§ 1. Язык чисел. Мера
§ 1. Язык чисел. Мера Овладение числом и мерой – одно из важнейших завоеваний человека. Согласно мифу, Прометей был наказан Зевсом именно за то, что он передал человеку огонь и число, чем сделал его почти равным богам. Число (как и величина) – настолько широкое и