Глава 11 Сотворение мира
Глава 11 Сотворение мира
В контексте зарождающейся теории живых систем разум — не вещь, а процесс. Это познание, процесс обучения, тождественный процессу самой жизни. В этом состоит суть теории познания Сантьяго, предложенной Умберто Матураной и Франциско Варелой.
Идентификация разума, или обучения, с процессом жизни представляет радикально новую идею в науке, но в то же время является одной из самых глубоких и архаичных интуитивных догадок человечества. В древние времена рациональный человеческий рассудок, или разум, рассматривался просто как один из аспектов нематериальной души или духа. Основное различение проводилось не между телом и разумом, но между телом и душой, или телом и духом. Хотя различие между душой и духом менялось со временем, оба эти термина с самого начала объединяли в себе два понятия — жизненную силу и деятельность сознания2.
В древнейших языках обе идеи выражались через метафору дыхания жизни. Действительно, этимологические корни слов «душа» и «дух» во многих языках восходят к «дыханию». Словом, обозначающим «душу» на санскрите (атман), греческом (пневма) и латинском (анима), служит «дыхание». То же относится и к «духу». На латинском {спиритус), греческом {психе) и древнееврейском (руах) это тоже — «дыхание».
Всеобщее древнее интуитивное представление, стоящее за этими словами, связывало душу или дух с дыханием жизни. Подобным же образом, концепция познания в теории Сантьяго далеко не ограничивается рациональным разумом, но включает весь процесс жизни. Дыхание жизни — исключительно точная метафора для его описания.
Когнитивная наука
Подобно концепции «ментального процесса», независимо сформулированной Грегори Бэйтсоном3, теория Сантьяго уходит корнями в кибернетику. Она была разработана в рамках интеллектуального движения, которое подходит к изучению разума и познания с системной, междисциплинарной точки зрения, лежащей за пределами традиционной сферы психологии и эпистемологии. Этот новый подход, который еще не выкристаллизовался в зрелую научную дисциплину, все чаще называют когнитивной наукой4.
Кибернетика дала когнитивной науке первую модель обучения. Она исходила из того, что человеческий интеллект подобен компьютерному до такой степени, что познание можно определить как обработку информации, т. е. манипуляцию символами, основанную на наборе правил5. Согласно этой модели, процесс познания включает в себя ментальное представление. Разум здесь осмысливается как компьютер, манипулирующий символами, которые представляют определенные черты мира6. Эта компьютерная модель ментальной деятельности была настолько убедительной и мощной, что господствовала во всех исследованиях когнитивной науки на протяжении более чем тридцати лет.
Начиная с 40-х годов вся нейробиология формировалась под воздействием идеи, представляющей мозг в виде устройства для обработки информации. Например, когда исследования зрительной области коры мозга показали, что определенные нейроны реагируют на определенные особенности воспринимаемых объектов — скорость, цвет, контраст и т. д., — сразу возникло представление о том, что эти специализированные нейроны считывают зрительную информацию с сетчатки и передают ее в другие области мозга для дальнейшей обработки. Однако последующие исследования на животных показали, что связывать нейроны с соответствующими характеристиками объектов можно только тогда, когда животное находится под глубоким наркозом и осуществляется строгий контроль над внутренней и внешней средой. Когда животное наблюдают в бодрствующем состоянии и в более привычных для него внешних условиях, его нейронные реакции оказываются более чувствительными ко всему контексту визуального возбудителя и уже не могут быть истолкованы в терминах последовательной обработки информации7.
В 70-е годы, когда появилась концепция самоорганизации, компьютерная модель обучения была наконец подвергнута серьезному сомнению. Необходимость свежего критического взгляда на эту доминирующую гипотезу была обусловлена двумя хорошо известными недостатками компьютерного «видения». Первый: обработка информации основана на ряде последовательных правил, применяемых по очереди; | второй: эта обработка локализована таким образом, что повреждение [любой части системы приводит к серьезным нарушениям ее работы в | целом. Обе эти особенности входят в поразительное противоречие с биологическими наблюдениями. Самые обычные визуальные задачи даже крохотными насекомыми решаются быстрее, чем это физически возможно при последовательной обработке; а способность поврежденного мозга к восстановлению и сохранению функционирования в целом хорошо известна всем.
Эти наблюдения побуждали к сдвигу фокуса — от символов к связности, от локальных правил к глобальной согласованности, от обычной обработки информации к неожиданным возможностям нейронных сетей. С учетом современного развития нелинейной математики и моделей самоорганизующихся систем, такое смещение внимания обещало новые и интеллектуально волнующие направления исследований. Действительно, в начале 80-х годов модели «связных» нейронных сетей приобрели большую популярность8. Эти модели тесно взаимосвязанных элементов предназначены для одновременного выполнения миллионов операций и проявляют интересные глобальные — внезапно возникающие — свойства. Как поясняет Франциско Варела, «Мозг — это… высоко согласованная система: плотные взаимодействия между его компонентами приводят к тому, что в конечном счете все, что происходит, оказывается функцией того, что делают все компоненты… В результате вся система приобретает внутреннюю согласованность в своих паттернах, хотя мы не можем точно сказать, как это происходит»9.
Теория Сантьяго
Теория Сантьяго, трактующая познание, возникла в ходе изучения нейронных сетей и с самого начала была связана с концепцией автопоэза, предложенной Матураной10. Познание, или обучение, согласно Матуране, представляет собой деятельность, являющуюся составной частью самосозидания и самоподдержания автопоэзных сетей. Другими словами, обучение — это сам процесс жизни. «Живые системы — это когнитивные системы, — пишет Матурана, — а жизнь — это процесс обучения»11. Обращаясь к нашим трем критериям живых систем — структуре, паттерну и процессу, — мы можем сказать, что жизненный процесс состоит из всех видов деятельности, направленной на непрерывное воплощение системного (автопоэзного) паттерна организации в физической (диссипативной) структуре.
Поскольку познание традиционно понимается как процесс получения знания, мы должны описать его как взаимодействие организма с окружающей средой. Именно это и делает теория Сантьяго. Специфическим феноменом, лежащим в основе процесса познания, является структурное сопряжение. Как мы видели, автопоэзная система претерпевает непрерывные структурные изменения, сохраняя в то же время свой паутинообразный паттерн организации. Она сопряжена со своим окружением структурно, т. е. через повторяющиеся взаимодействия, каждое из которых является толчком для структурных изменений в системе12. Тем не менее живая система вполне автономна. Окружение лишь инициирует структурные изменения; оно не определяет и не направляет их.
Далее, живая система не просто определяет структурные изменения; она определяет также, какие именно внешние возмущения инициируют их. В этом ключ к пониманию теории Сантьяго. Структурные изменения в системе — это и есть акты познания. Определяя, какие из возмущений, поступающих от внешней среды, становятся начальными толчками перемен, система, как говорят Матурана и Варела, «творит некий мир». В таком случае, познание — это не представление независимо существующего мира, но скорее непрерывное творение мира в процессе жизнедеятельности. Взаимодействие живой системы с окружающей ее средой имеет познавательный характер, и сам процесс жизнедеятельности есть процесс познания. По словам Матураны и Варелы, «жить значит знать»13.
Очевидно, что здесь мы имеем дело с радикальным расширением концепции познания и, следовательно, концепции разума. Согласно этому новому подходу, познание охватывает весь процесс жизни — включая восприятие, эмоции и поведение — и не обязательно нуждается в мозге и нервной системе. Даже бактерии воспринимают определенные характеристики своего окружения. Они ощущают химические различия и, соответственно, плывут в сторону сахара и сторонятся кислоты; они ощущают перегрев и избегают его, они движутся к свету или удаляются от него, а некоторые бактерии способны обнаруживать магнитные поля14. Таким образом, даже бактерия творит мир — мир тепла и холода, магнитных полей и химических градиентов. Во всех этих когнитивных процессах восприятие и действие неразделимы, и, поскольку структурные изменения и связанные с ними действия, которые инициируются в организме, зависят от структуры организма, Франциско Варела описывает познание как «воплощенное действие»15.
Фактически познание включает в себя два неразрывно связанных вида деятельности: поддержание (и продолжение) автопоэза и созидание мира. Живая система — это многократно взаимосвязанная сеть, чьи компоненты постоянно изменяются, преобразуются и заменяются другими компонентами. Эта сеть отличается исключительной гибкостью и текучестью, что позволяет системе особым образом реагировать на возмущения, или «стимулы», идущие от окружающей среды. Определенные возмущения запускают специфические структурные изменения, т. е. изменения в структуре связи внутри сети. Это распределительный феномен: вся сеть реагирует на выбранное возмущение, перестраивая свои паттерны связи.
Разные организмы изменяются по-разному, и со временем каждый организм в процессе развития формирует свое индивидуальное направление структурных изменений. Поскольку эти структурные изменения являются актами познания, развитие всегда ассоциируется с познанием. Фактически развитие и обучение — две стороны одной медали. Оба они суть проявления структурного сопряжения.
Не все физические изменения в организме являются актами познания. Когда кролик съедает часть одуванчика или когда зверь получает ранение, эти структурные изменения не определяются и не направляются организмом; они не связаны с выбором и, следовательно, не являются актами познания. Тем не менее эти вынужденные физические изменения сопровождаются другими структурными изменениями (восприятие, реакция иммунной системы и т. д.), которые оказываются актами познания.
С другой стороны, не все возмущения, исходящие из окружающей среды, вызывают структурные изменения. Живые организмы реагируют лишь на малую часть возбудителей, воздействующих на них. Общеизвестно, что нам доступны звуки лишь ограниченного диапазона частот; мы часто не замечаем вещи и события в нашем окружении, которые нас не касаются; известно также, что наше восприятие в значительной мере обусловлено рамками наших представлений и культурным контекстом.
Другими словами, существует множество возмущений, не вызывающих структурных изменений, поскольку они «чужды» системе. Таким образом, каждая живая система строит свой характерный мир согласно своей характерной структуре. Как отмечает Варела, «разум и мир переживают совместное становление»16. Однако через обоюдное структурное сопряжение, отдельные живые системы составляют части миров друг друга. Они общаются между собой и координируют свое поведение17. Это — экология миров, взращенная взаимно согласованными актами познания.
По теории Сантьяго, познание является неотъемлемой частью взаимодействия живого организма с его окружением. Организм не реагирует на раздражающие факторы окружения через линейную причинно-следственную цепочку, но отвечает структурными изменениями в своей нелинейной организационно закрытой автопоэзной сети. Такой тип ответа дает организму возможность поддерживать свою автопоэзную организацию и, следовательно, продолжать свое существование в окружающей среде. Другими словами, когнитивное взаимодействие со своей средой — это взаимодействие разумное. С точки зрения теории Сантьяго, разумность есть проявление богатства и гибкости способов структурного сопряжения организма.
Диапазон тех взаимодействий с окружающей средой, которые может осуществлять живая система, определяет ее когнитивную сферу. Эмоции являются естественной частью этой сферы. Например, когда мы отвечаем на оскорбление вспышкой гнева, весь этот паттерн физиологических процессов — пылающее лицо, учащенное дыхание, дрожь и т. п. — является частью познания. И новейшие исследования убедительно подтверждают, что каждый когнитивный акт эмоционально окрашен18.
По мере того как возрастает сложность живого организма, расширяется и его когнитивная сфера. В частности, мозг и нервная система значительно расширяют когнитивную сферу организма, поскольку они значительно увеличивают диапазон и развивают дифференциацию структурных сопряжений. На определенном уровне сложности живой организм структурно сопрягается не только с окружающей средой, но и с самим собой, творя тем самым не только внешний, но и внутренний мир. У человеческих существ созидание внутреннего мира тесно связано с языком, мыслью и сознанием19.
Не отображение, не информация
Являясь частью единой концепции жизни, разума и сознания, когнитивная теория Сантьяго имеет глубокое значение для биологии, психологии и философии. В частности, что касается ее вклада в эпистемологию — раздел философии, изучающий природу знания о мире, — то это, вероятно, один из самых радикальных и спорных ее аспектов.
Уникальная особенность эпистемологии, заложенной в теорию Сантьяго, состоит в том, что она противоречит идее, присущей большинству эпистемологии, но редко выражаемой явным образом, — идее о том, что познание есть отображение, представление независимо существующего мира. Компьютерная модель познания как обработки информации была просто своеобразной формулировкой (основанной на ошибочной аналогии) более общей идеи о том, что мир предопределен и независим от наблюдателя, а познание есть ментальное отображение объективных особенностей этого мира внутри познающей системы. Центральным образом здесь является, согласно Вареле, «познающий агент, заброшенный на парашюте в предопределенный мир» и выделяющий его существенные черты через процесс отображения20.
Согласно теории Сантьяго, познание есть не отображение независимого, предопределенного мира, но сотворение нового мира. Конкретным организмом в процессе его жизнедеятельности созидается не мир вообще, а некий конкретный мир, всегда обусловленный структурой организма. Поскольку индивидуальные организмы в рамках одного вида обладают более или менее идентичной структурой, они созидают схожие миры. Мы, люди, кроме этого, сообща пользуемся абстрактным миром языка и мысли и благодаря этому сообща творим наш действительный мир21.
Матурана и Варела не считают, что где-то существует некая пустота, из которой мы создаем вещество. Есть материальный мир, но он не обладает никакими предопределенными свойствами. Авторы теории Сантьяго не утверждают, что «ничто не существует»; они утверждают, что «ни одна вещь не существует» независимо от процесса познания. Нет объективно существующих структур; нет заданной территории, карту которой мы могли бы составить: само составление карты порождает особенности территории.
Нам известно, например, что кошки или птицы видят деревья совершенно иначе, чем мы, потому что воспринимают свет в другом частотном диапазоне. Таким образом, форма и фактура «деревьев», которые они творят, будут отличаться от наших. Глядя на дерево, мы не изобретаем реальность. Но способы, посредством которых мы устанавливаем форму и размеры объектов и выделяем паттерны из множества получаемых нами сенсорных воздействий, зависят от нашего физического устройства. Как сказали бы Матурана и Варела, способы, которые мы используем для структурного сопряжения с окружающей средой, и, следовательно, мир, который мы творим, зависят от нашей собственной структуры.
Вместе с идеей о ментальном представлении независимого мира теория Сантьяго отвергает и идею об информации как некоторой совокупности объективных черт этого независимо существующего мира. По словам Варелы:
Мы должны подвергнуть сомнению нашу уверенность в том, что мир предопределен и что познание — это отображение. В контексте когнитивной науки это означает, что мы должны пересмотреть идею о том, что в мире существует готовая информация и ее извлекает познающая система22.
Отказ от отображения и информации как основных компонентов процесса познания дается с трудом, поскольку мы привыкли постоянно пользоваться обоими этими понятиями. Символы нашего языка, как разговорного, так и письменного, суть отображения вещей и идей; и в нашей обыденной жизни мы рассматриваем факты (время, даты, сводки погоды, телефон друга) как весьма важные для нас элементы информации. Фактически всю нашу эпоху часто называют «веком информации». Как же, в таком случае, Матурана и Варела могут утверждать, что в процессе познания нет информации?
Чтобы понять это на первый взгляд озадачивающее утверждение, мы должны помнить, что у человеческих существ познание включает язык, абстрактное мышление и символические понятия — феномены, другим биологическим видам недоступные. Способность абстрактно мыслить, как мы увидим далее, является ключевой характеристикой человеческого сознания, и, благодаря этой способности, мы действительно можем использовать, и используем, ментальное отображение, символы и информацию. Однако эти элементы процесса познания присущи не всем живым системам. И хотя человек часто использует ментальное отображение и информацию, наш познавательный процесс построен не на них.
Для того чтобы правильно оценить эти идеи, нам очень полезно будет более пристально рассмотреть то, что подразумевается под «информацией». Обыденное представление сводится обычно к тому, что информация — это «нечто, находящееся где-то», а мозг собирает и обрабатывает это нечто. Однако таким элементом информации является число, имя или краткое сообщение, которое мы извлекаем из всей сети взаимоотношений, из контекста, в который оно заключено и который сообщает ему смысл. Всякий раз, когда такой «факт» заключен в устойчивом контексте и встречается нам с высокой регулярностью, мы можем абстрагировать его от контекста, поставить его в соответствие со значением, присущим ему внутри этого контекста, и назвать это «информацией». Мы настолько привыкли к таким абстрактным операциям, что склонны верить, что значение содержится в элементе информации, а не в контексте, из которого он был извлечен.
Например, в красном цвете нет ничего «информативного», за исключением того, что, будучи включенным в культурную сеть соглашений и технологическую сеть дорожного движения, он ассоциируется с остановкой на перекрестке. Если бы люди из какой-то иной культуры приехали в один из наших городов и увидели красный свет светофора, он, скорее всего, не имел бы для них никакого смысла. Передачи информации не произошло бы. Подобным же образом время дня и дата абстрагируются нами от сложных понятий и идей, связанных с солнечной системой, астрономическими наблюдениями и культурными условностями.
Эти соображения применимы и к генетической информации, закодированной в ДНК. Варела поясняет, что понятие генетического кода было абстрагировано от лежащей в его основе метаболической сети, в которой только и имеет смысл этот код:
Долгие годы биологи рассматривали протеиновые последовательности как инструкции, закодированные в ДНК. Очевидно, однако, что триплеты ДНК могут заранее определять содержание аминокислот в протеине только в том случае, если они включены в клеточный метаболизм, то есть в тысячи ферментных «правил» в сложной химической сети. И только благодаря возникновению внезапных регулярностей в такой сети в целом, мы можем вынести за скобки этотметаболический фон и тогда уже рассматривать триплеты как коды для аминокислот23.
Матурана и Бэйтсон
Отказ Матураны от идеи о том, что познание включает ментальное отображение независимого мира, служит ключевым различием между его концепцией процесса познания и теорией Грегори Бэйтсона. Матурана и Бэйтсон, практически одновременно и независимо друг от друга, пришли к революционной идее отождествления процесса познания с процессом жизни24. Но они подошли к ней с совершенно разных сторон: Бэйтсон основывался на своем глубоком интуитивном понимании природы разума и жизни, подкрепленном тщательными наблюдениями над живым миром; Матурану вели его попытки определить — на основе нейробиологических исследований — паттерн организации, присущий всем живым системам.
Бэйтсон, работая в одиночку, годами оттачивал свои «критерии ментального процесса», но так и не развил их в теорию живых систем. Матурана, в противоположность ему, сотрудничал с другими учеными в разработке теории организации живого, которая обеспечила теоретическую основу для понимания процесса познания как процесса жизни. Как отмечает в своей обширной статье «Понять Бэйтсона и Матурану» исследователь социальной сферы Пол Делл, Бэйтсон сосредоточился исключительно на эпистемологии (природе знания) в ущерб онтологии (природе бытия):
Для Бэйтсона онтология остается «нехоженой дорогой»… У эпистемологии Бейтсона нет онтологии, которая могла бы стать ее основанием… Я убежден, что труды Матураны содержат как раз ту онтологию, которую Бэйтсон так и не разработал25.
Изучение бэйтсоновских критериев ментального процесса показывает, что они распространяются как на структуру, так и на паттерны живых систем; возможно, из-за этого многие ученики Бэйтсона находили их достаточно сложными для понимания. Внимательный анализ этих критериев выявляет также заложенное в их основу верование, что познание сводится к ментальному отображению объективных характеристик мира в познающей системе26.
Бэйтсон и Матурана, независимо друг от друга, разработали революционную концепцию разума, основанную на кибернетике. Бэйтсон способствовал развитию этой традиции еще в 40-е годы. Возможно, именно его увлечение кибернетическими идеями в период их становления привело к тому, что Бэйтсону так и не удалось выйти за пределы компьютерной модели познания. Матурана же, в отличие от него, отказался от этой модели и разработал теорию, в которой познание рассматривается как акт «сотворения мира», а сознание — как феномен, тесно связанный с языком и абстрактным мышлением.
Пересмотр компьютерной модели
На предыдущих страницах я неоднократно подчеркивал различия между теорией Сантьяго и компьютерной моделью познания, разработанной в рамках кибернетики. Теперь было бы полезно еще раз взглянуть на компьютеры в свете нашего нового понимания познания, чтобы развеять дымку недоразумений, окутывающую «компьютерный интеллект».
Компьютер обрабатывает информацию. Это означает, что он манипулирует символами на основе определенных правил. Символы представляют собой определенные элементы, загружаемые в компьютер извне; в ходе обработки информации изменений в структуре машины не происходит. Физическая структура компьютера неизменна, она определена замыслом разработчика и конструкцией.
Нервная система живого организма функционирует существенно иначе. Как мы видели, она взаимодействует со своим окружением, постоянно изменяя свою структуру таким образом, что в каждый определенный момент ее физическая структура является записью предыдущих структурных изменений. Нервная система не обрабатывает информацию из внешнего мира, но, наоборот, творит некий мир в процессе познания.
В человеческом познании используется язык и абстрактное мышление и, следовательно, символы и ментальные отображения; но абстрактная мысль — это лишь малая часть человеческого познания, и, вообще говоря, она не служит основой для наших повседневных решений и действий. Человеческие решения никогда не бывают в полной мере рациональными, зато всегда окрашены эмоциями; человеческая мысль всегда погружена в телесные ощущения и процессы, которые вносят свой вклад в полный спектр познания.
В книге «Компьютеры и познание» исследователи компьютеров Терри Уиноград и Фернандо Флорес подчеркивают, что рациональная мысль отфильтровывает и отбрасывает подавляющую часть когнитивного спектра и тем самым вызывает «слепоту абстракции». Подобно шорам, термины, принятые нами для самовыражения, ограничивают диапазон нашего взгляда на мир. В компьютерной программе, как поясняют Уиноград и Флорес, различные цели и задачи формулируются в терминах ограниченного набора объектов, свойств и операций; этот набор и воплощает ту слепоту, которая приходит вместе с абстракциями, необходимыми для создания программ. Однако:
Существуют ограниченные типы задач, в которых эта слепота не исключает достаточно разумного поведения. Например, многие игры предполагают прямое применение… таких программ, которые позволяют переигрывать соперника-человека… Это те области, в которых идентификация требуемых характеристик весьма прямолинейна, а природа решений имеет четкий и ясный характер27.
Большая путаница вызвана тем, что компьютерщики используют слова «интеллект», «память» и «язык» для описания компьютеров, тем самым как бы уравнивая эти понятия с человеческими феноменами, хорошо известными из повседневного опыта. Это серьезная ошибка. Например, самая суть разума заключается в том, чтобы действовать наилучшим образом в условиях неопределенной проблемы и неочевидных решений. Разумное человеческое поведение в таких ситуациях основано на здравом смысле, накопленном из жизненного опыта. Здравый смысл, однако, недоступен компьютерам из-за слепоты абстракции и неизбежной ограниченности формальных операций; поэтому и невозможно запрограммировать компьютер на разумность28.
Одновременно с идеей искусственного интеллекта появился и великий соблазн запрограммировать компьютер на понимание человеческого языка. Однако после нескольких десятилетий тщетной работы над этой проблемой изобретатели АИ (автоматического интерпретатора) начинают понимать, что все их усилия обречены на неудачу: компьютерам не дано в более или менее достаточной степени понять человеческий язык29. Причина в том, что язык вложен в паутину социальных и культурных условностей, которая содержит и негласный контекст смысла. Мы понимаем этот контекст, потому что он эквивалентен нашему здравому смыслу, но компьютер нельзя запрограммировать на здравый смысл и, следовательно, на понимание языка.
Это положение может быть проиллюстрировано множеством простых примеров, вроде текста, приведенного Терри Уиноградом: «Томми только что подарили новый набор кубиков. Он как раз открывал коробку, когда вошел Джимми». Как поясняет Уиноград, компьютер ни за что не догадается, что лежит в коробке, мы же сразу предполагаем, что в ней лежат новые кубики Томми. Мы-то знаем, что подарки обычно приносят в коробках и что самое естественное в этом случае — открыть коробку. И, что еще более важно, мы полагаем, что два предложения в тексте взаимосвязаны, тогда как компьютер не видит смысла в том, чтобы связывать коробку с кубиками. Другими словами, наша интерпретация этого простого текста основана на некоторых связанных со здравымсмыслом предположениях и ожиданиях, недоступных компьютеру30.
Тот факт, что компьютер не может понять язык, отнюдь не означает, что он не может быть запрограммирован на распознавание простых лингвистических структур и манипуляции с ними. Действительно, в последние годы в этой области был достигнут значительный прогресс. Сегодня компьютер может распознавать несколько сотен слов и фраз, и этот базовый словарь продолжает расширяться. Так, машины все чаще используются для взаимодействия с людьми посредством структур человеческого языка и выполнения ограниченного круга заданий. Например, я могу позвонить в свой банк и запросить информацию о моем текущем счете; компьютер, если он получит также особый кодовый сигнал, сообщит мне состояние баланса, номера и суммы последних выплат и вкладов и т. п. Такое взаимодействие, предполагающее комбинацию простых произнесенных слов с набранным кодовым номером, очень удобно и полезно; но из этого вовсе не следует, что банковский компьютер понимает человеческий язык.
К сожалению, налицо поразительный диссонанс между критическими оценками АИ и радужными проектами компьютерной индустрии (последние явно мотивированы коммерческими интересами). Новейшая волна самых восторженных обещаний исходит от так называемого «проекта пятого поколения», запущенного в Японии. Анализ его грандиозных планов показывает, тем не менее, что они не более реальны, чем аналогичные предыдущие проекты, хотя вполне вероятно, что в рамках программы будет создано немало полезных побочных продуктов31.
Центральной идеей проекта пятого поколения и других подобных исследовательских программ служит разработка так называемых «экспертных систем», ориентированных на то, чтобы соперничать с экспертами-людьми в решении определенных задач. Здесь мы опять сталкиваемся с неудачным использованием терминологии. Как отмечают Уиноград и Флорес:
Называть программу «экспертом» — значит вводить в заблуждение точно так же, как и называть ее «разумной» или говорить, что она «понимает». Такое неадекватное представление может быть полезным для тех, кто пытается обеспечить финансирование своих исследований или продавать подобные программы, но оно может вызвать необоснованные ожидания у тех, кто пытается их использовать32.
В середине 80-х философ Хьюберт Дрейфус и исследователь компьютеров Стюарт Дрейфус предприняли тщательное исследование экспертизы, проводимой людьми, и сопоставили ее с компьютерными экспертными системами. Вот что они обнаружили:
…следует расстаться с традиционным убеждением, что новичок учится на частных случаях и лишь по мере приобретения профессионального мастерства начинает абстрагировать и усваивать все более тонкие законы… Приобретение мастерства происходит как раз в противоположном направлении — от абстрактных законов к особым случаям. Похоже, что новичок делает умозаключения, используя законы и факты точно так же, как и эвристически запрограммированный компьютер, однако при наличии таланта и с приобретением соответствующего опыта новичок превращается в эксперта, который интуитивно видит, что нужно делать, не пользуясь законами33.
Это замечание показывает, почему экспертные системы никогда не достигают уровня экспертов-людей: последние действуют не по жесткой системе правил, а на основе интуитивного восприятия всей совокупности фактов. Дрейфус и Дрейфус отмечают также, что экспертные системы практически проектируются на основе опроса экспертов-людей, владеющих знанием соответствующих правил. Когда это делается, эксперты чаще всего формулируют те законы, которые запомнили со времен ученичества, но перестали использовать, став профессиональными экспертами. Если эти законы ввести в компьютер, результирующая экспертная система будет копировать новичка, но никогда не сможет соперничать с настоящим экспертом.
Когнитивная иммунология
Вероятно, наиболее важные практические применения теория Сантьяго нашла в нейробиологии и иммунологии. Как уже отмечалось, новый t взгляд на познание существенно проясняет загадку вековой давности о взаимосвязи между разумом и мозгом. Разум представляет собой не вещь, а процесс — процесс познания, тождественный процессу жизни. 1озг является специфической структурой, с помощью которой этот процесс осуществляется. Таким образом, взаимосвязь между разумом и мозгом — это взаимосвязь между процессом и структурой.
Мозг никоим образом не является единственной структурой, вовлеченной в процесс познания. Становится все более очевидным, что иммунная система человека, равно как и других позвоночных, представляет собой сеть не менее сложную и переплетенную, чем нервная система, и выполняет не менее важные координирующие функции. Классическая иммунология рассматривает иммунную систему как защитную систему тела, направленную вовне; ее часто описывают с помощью военных метафор — армии белых кровяных клеток, генералов, солдат и т. д. Последние открытия Франциско Варелы и его коллег из Парижского университета бросают серьезный вызов этой концепции34. Сегодня многие исследователи убеждены, что классический подход с его военными метафорами был одним из главных камней преткновения на пути к разгадке автоиммунных заболеваний, таких, как СПИД.
В отличие от нервной системы, сосредоточенной и связанной через анатомические структуры, иммунная система рассеяна в лимфатической жидкости, проникающей в каждую отдельную ткань. Ее компоненты — класс клеток, именуемых лимфоцитами и широко известных как белые кровяные клетки, — очень быстро передвигаются и вступают в химические связи друг с другом. Лимфоциты представляют собой группу на редкость разнообразных клеток. Каждый их тип отличается особыми молекулярными маркерами — антителами, которые выступают над поверхностью этих клеток. Человеческое тело содержит миллиарды белых кровяных клеток различного типа, которые обладают чрезвычайной способностью химически связывать любой молекулярный профиль в окружающей их среде.
Согласно традиционной иммунологии, лимфоциты обнаруживают вторгшийся агент, антитела прикрепляются к нему и таким образом его нейтрализуют. Такая последовательность означает, что белые кровяныеклетки распознают чужие молекулярные профили. Более детальные исследования показывают, что этот процесс предполагает также некоторую форму обучения и запоминания. В классической иммунологии, однако, такие представления используют чисто метафорически, не связывая их с каким-либо реальным когнитивным процессом.
Недавние исследования показали, что в нормальных условиях антитела, циркулирующие во всем теле, прикрепляются ко многим (если не ко всем) типам клеток, включая и самих себя. Вся система скорее напоминает сеть, множество людей, разговаривающих между собой, но не воинов, высматривающих врага. Постепенно иммунологи были вынуждены изменить свое представление, смещаясь от иммунной системы к иммунной сети.
Этот сдвиг представлений оказался серьезной проблемой для классической школы. Если иммунная система — это сеть, компоненты которой связываются друг с другом, и если антитела призваны уничтожать то, с чем они связываются, то выходит, что мы должны разрушать сами себя. Очевидно, что мы этого не делаем. Похоже, что иммунная система все-таки способна отличать клетки собственного тела от чуждых агентов, себя от несебя. Но поскольку, по классической теории, распознать чуждый агент для антитела означает химически прикрепиться к нему и тем самым нейтрализовать его, то остается загадкой, каким образом иммунная система может распознавать собственные клетки, не нейтрализуя их, т. е. не разрушая их функционально.
Более того, с традиционной точки зрения, иммунная система может развиваться только тогда, когда происходят внешние возмущения, на которые она реагирует. Если нет атак, антитела не развиваются. Последние эксперименты показали, однако, что животные, полностью защищенные от болезнетворных агентов, все же развивают полноценную иммунную систему. С новой точки зрения, это вполне естественно, поскольку основная задача иммунной системы состоит не в том, чтобы реагировать на внешние угрозы, а в том, чтобы обеспечивать собственную устойчивость35.
Варела и его коллеги считают, что иммунную систему следует понимать как автономную когнитивную сеть, которая отвечает за «молекулярную идентичность» тела. Взаимодействуя друг с другом и с другими клетками тела, лимфоциты непрерывно регулируют количество клеток и их молекулярные профили. Иммунная система не просто реагирует на чуждые агенты, но обслуживает важную функцию регулирования клеточного и молекулярного репертуара организма. Как поясняют Франциско Варела и иммунолог Антонио Кутиньо: «Тесный союз иммунной системы и тела позволяет телу поддерживать гибкую и пластичную идентичность на протяжении всей его жизни и реагировать на многочисленные внешние возмущения»36.
Согласно теории Сантьяго, когнитивная деятельность иммунной системы обусловлена ее структурным сопряжением с окружающей средой. Когда чуждые молекулы проникают в тело, они вызывают возмущения в иммунной сети, запуская структурные изменения. Результирующая реакция состоит не в автоматическом разрушении чуждых молекул, но в регулировании их уровня в контексте других регулирующих механизмов системы. Реакция может быть различной: она зависит от состояния всей системы.
Когда иммунологи вводят в организм большие объемы чуждого агента, как это делается в стандартных экспериментах над животными, иммунная система дает массированный защитный ответ, описанный в классической теории. Однако, замечают Варела и Кутиньо, это в высшей степени искусственная лабораторная ситуация. В своей естественной окружающей среде животное не получает больших порций вредоносных веществ. Малые количества, которые действительно проникают в тело, естественным образом включаются в текущую регуляторную деятельность иммунной сети.
С пониманием иммунной системы как когнитивной, самоорганизующейся и саморегулирующей сети тайна различения «свой— чужой» легко раскрывается. Иммунная система не делит клетки на свои и чужие (такое разделение ей и не требуется), поскольку и те и другие являются объектами регулирующих процессов. Тем не менее, если вторжение чуждых агентов оказывается настолько массированным, что они не могут быть включены в регулирующую сеть, как, например, в случае инфекции, они приводят в действие специфические механизмы иммунной системы, которые формируют защитную реакцию.
Исследования показали, что широко известный иммунный ответ такого рода включает квазиавтоматические механизмы, практически независимые от когнитивной деятельности сети37. По традиции, иммунология имела дело исключительно с такой «рефлекторной» иммунной деятельностью. Ограничиться этими исследованиями все равно, как если бы мы ограничили исследование мозга изучением рефлексов. Защитная иммунная деятельность очень важна, но в свете новых воззрений она являет собой лишь второстепенную функцию когнитивной деятельности иммунной системы, сосредоточенной преимущественно на внутренних процессах и поддерживающей молекулярную идентичность тела.
Область когнитивной иммунологии пока еще переживает период становления, и самоорганизующие свойства иммунных сетей поняты далеко не до конца. Тем не менее некоторые ученые, проявляющие активность в этой новой сфере исследований, уже стали задумываться над многообещающими клиническими применениями в области лечения автоиммунных заболеваний38. Вероятно, терапевтические стратегии будущего будут основаны на понимании того, что автоиммунные заболевания отражают нарушения в функционировании иммунной сети. Эти стратегии, возможно, будут опираться на новые технологии, призванные укрепить сеть, восстанавливая ее связность.
Такие технологии, однако, потребуют гораздо более глубокого понимания богатой динамики иммунных сетей, прежде чем их можно будет эффективно применять. В будущем открытия когнитивной иммунологии обещают стать исключительно важными для всей сферы здравоохранения и медицины. По мнению Варелы, утонченный психосоматический взгляд на здоровье («разум-тело») не сможет развиваться, пока мы не привыкнем понимать нервную и иммунную системы как две взаимодействующие когнитивные системы, как два «мозга» в непрерывном диалоге39.
Психосоматическая сеть
Важный недостающий фрагмент картины был найден в середине 80-х нейробиологом Кэндейс Перт и ее коллегами из Национального института душевного здоровья в Мэриленде. Эти исследователи идентифицировали группу молекул, называемых пептидами, в роли молекулярных посланников, обеспечивающих диалог между нервной и иммунной системами. Фактически Перт и ее коллеги обнаружили, что эти посланники связывают три автономные системы — нервную, иммунную и эндокринную — в единую сеть.
Согласно традиционному взгляду, это три отдельные системы и выполняют они разные функции. Нервная система, состоящая из мозга и сети нервных клеток, пронизывающей все тело, представляет собой вместилище памяти, мыслей и эмоций. Эндокринная система, состоящая из желез и гормонов, является основной регулирующей системой тела, контролируя и интегрируя разнообразные телесные функции. Иммунная система, состоящая из селезенки, костного мозга, лимфатических узлов и иммунных клеток, циркулирующих по телу, служит защитной системой тела, отвечающей за цельность ткани и контролирующей заживление ран и механизмы восстановления тканей.
Соответственно, эти три системы изучаются тремя отдельными дисциплинами — нейробиологией, эндокринологией и иммунологией. Между тем, новые исследования пептидов убедительно показали, что это концептуальное разделение представляет собой не что иное как исторический артефакт, с которым больше нельзя мириться. Согласно Кэндейс Перт, эти три системы следует рассматривать как нераздельные части единой психосоматической сети40.
Пептиды — около 60–70 особых макромолекул — вначале изучались в других контекстах, и им давали разные названия — гормоны, нейропередатчики, эндорфины, факторы роста и т. д. Понадобилось много лет, чтобы увидеть в них единое семейство молекулярных посланников. Эти посланники представляют собой короткие цепочки аминокислот, которые прикрепляются к специфическим рецепторам, в изобилии рассеянным по поверхности всех клеток тела. Поддерживая взаимосвязь между иммунными клетками, железами и клетками мозга, пептиды формируют психосоматическую сеть, пронизывающую весь организм. Пептиды оказываются биохимическим проявлением эмоций; они играют очень важную роль в координирующей деятельности иммунной системы; они связывают и объединяют ментальную, эмоциональную и биологическую деятельность.
Решающие перемены в наших представлениях начались в 80-е годы, когда было сделано парадоксальное открытие: определенные гормоны, которые, как предполагалось, производятся железами, оказались пептидами; более того, выяснилось, что они также производятся и хранятся в мозге. С другой стороны, ученые обнаружили, что нейропередатчики, именуемые эндорфинами, которые, как считалось, производятся только в мозге, генерируются также иммунными клетками. По мере того как обнаруживалось все больше и больше пептидных рецепторов, становилось очевидным, что практически любой из известных пептидов может производиться и в мозге, и в различных частях тела. И тогда Кэндейс Перт провозглашает: «Я больше не могу проводить четкое разграничение между мозгом и телом»41.
В нервной системе пептиды производятся в нервных клетках и затем перемещаются вниз по аксонам (длинным ответвлениям нервных клеток), где и хранятся на дне в виде крошечных шариков до тех пор, пока соответствующие сигналы не освободят их для деятельности. Эти пептиды играют существенную роль в поддержании связи внутри нервной системы. Традиционно считалось, что передача нервных импульсов происходит через промежутки (синапсы) между соседними нервными клетками. Однако оказалось, что этот механизм не столь важен и используется главным образом для сокращения мускулов. Большинство сигналов, поступающих из мозга, передаются через пептиды, генерируемые нервными клетками. Прикрепляясь к рецепторам вдали от «материнских» нервных клеток, эти пептиды функционируют не только в пределах всей нервной системы, но и в других тканях тела.
В иммунной системе белые кровяные клетки не только обладают рецепторами для всех пептидов, но и сами производят пептиды. Пептиды управляют миграционными паттернами клеток и всеми их жизненными функциями. Это открытие, как и успехи когнитивной иммунологии, несомненно, должно найти замечательные терапевтические применения. Перт и ее команда недавно открыли новый многообещающий метод лечения СПИДа, названный Пептидом Т42. Ученые выдвинули гипотезу, что СПИД обусловлен нарушением пептидных связей. Установив, что ВИЧ (вирус иммунодефицита человека) проникает в клетки через определенные пептидные рецепторы, нарушая тем самым функции всей сети, Перт и ее коллеги спроектировали защитный пептид, который прикрепляется к этим рецепторам и блокирует воздействие вируса. (Пептиды возникают естественным образом в теле, но они могут быть также спроектированы и синтезированы). Пептид Т имитирует деятельность естественных пептидов, и, следовательно, он совершенно не токсичен, в отличие от других препаратов против СПИДа. В настоящее время это средство проходит клинические испытания. Если оно окажется эффективным, в лечении СПИДа может произойти настоящая революция.
Еще один замечательный аспект недавно признанной психосоматической сети: пептиды оказались биохимическим проявлением эмоций. Большинство пептидов, если не все, влияют на поведение и настроение, и сегодня ученые выдвигают гипотезу, что каждый пептид, вероятно, порождает уникальный эмоциональный тон. Вся группа из 60–70 пептидов, возможно, составляет универсальный биохимический язык эмоций.
Нейробиологи традиционно связывали эмоции со специфическими областями мозга, в частности с лимбической системой. И это действительно так. Оказывается, что лимбическая система сильно насыщена пептидами. Однако это не единственная часть тела, где сконцентрированы пептидные рецепторы. Например, весь наш кишечник наполнен пептидными рецепторами. Вот почему мы «чувствуем нутром». Мы буквально ощущаем эмоции в своем кишечнике.