5. МИКРОАНАЛИЗ ПРОЦЕССА ТВОРЧЕСКОГО МЫШЛЕНИЯ ЭЙНШТЕЙНА

5. МИКРОАНАЛИЗ ПРОЦЕССА ТВОРЧЕСКОГО МЫШЛЕНИЯ ЭЙНШТЕЙНА

Теперь мы имеем общее представление о том, как мыслил Эйнштейн и как использовал основные психологические процессы, фундаментальные для повседневного мышления – “сенсорные опыты”, “картины-воспоминания”, “образы”, “ощущения” и “язык”. Нашим следующим шагом будет более пристальный анализ применения Эйнштейном некоторых из этих процессов в своей мыслительной стратегии. И, поскольку он провозглашал “комбинаторную игру неотъемлемой чертой продуктивной мысли”, давайте исследуем, как именно он сочетал “картины-воспоминания” и конструировал “образы” в процессе мышления.

“Продуктивные” образы Эйнштейна были не абстрактными двухмерными диаграммами, заполненными символами, трехмерными метафорическими визуализациями, которые он называл “мыслительными экспериментами”. Один из ключей к пониманию того, как Эйнштейн применял визуализацию, уже был дан в главе о моделировании (пример с двумя кастрюлями на газовой плите).

Паттерн, который Эйнштейн постоянно использовал в своей мыслительной стратегии – это обрисовывание символической визуальной метафоры некоего реального явления и затем анализ положений, предложенных этой символической конструкцией.

Рассмотрим почти фантастический “мыслительный эксперимент”, проведенный Эйнштейном для того, чтобы подвергнуть сомнению такой феномен, как “сила тяжести” или “гравитация”, обычно воспринимаемый нами как данность. Он начинает с вопроса: “Если мы поднимем камень и затем бросим его, почему он падает на землю?” Обычный ответ: “Потому что он притягивается землей”.

Используя невероятную фантазию, Эйнштейн заставляет нас сомневаться:

Представим большой участок пустого пространства, весьма отдаленного от звезд и других видимых небесных тел. Вообразим, что относительным телом, или точкой отсчета, будет вместительный сундук, напоминающий комнату или кабинет лифта, с находящимся внутри наблюдателем, снаряженным специальной аппаратурой. Естественно, гравитации для наблюдателя не существует. Он должен привязать себя веревками к полу, в противном случае любое движение – реакция со стороны пола – поднимет его к потолку.

К середине крышки сундука снаружи прикреплен крюк с канатом, и вот некое “существо” (что именно оно собой представляет не суть важно для нас) начинает с постоянной силой тянуть сундук, который вместе с находящимся внутри “наблюдателем” движется “вверх” с постоянным ускорением. С течением времени их скорость достигнет неслыханной величины – за этим мы наблюдаем с другой точки отсчета, которая находится в пространстве.

Но как человек, находящийся внутри, почувствует движение? Ускорение передастся ему через реакцию пола. Он, таким образом, должен как-то отрегулировать это давление мышечными усилиями ног, если не хочет быть распластанным по полу. И только тогда он будет стоять именно так, как стоят все жители земли – в комнате или на земле. Если же “человек” расслабит мышцы ног, ускорение больше не будет передаваться телу человека, и из-за этого он упадет на пол с тем же ускорением. Наблюдатель позднее убедит себя, что ускорение, с которым тело движется по направлению к полу, всегда одной и той же величины, какое бы тело ни было использовано для эксперимента.

Полагаясь на свои познания о гравитационных полях, человек в сундуке тоже придет к заключению, что он, его “обитатель”, находится в гравитационном поле, со временем не меняющимся. Конечно, его на миг озадачит, почему же сундук не падает в этом поле. Сразу, как только “обитатель” обнаружит привязанный к крышке канат, он последовательно придет к выводу, что сундук подвешен в спокойном состоянии в гравитационном поле.

Должны ли мы смеяться над ним и признать, что его выводы ошибочны? Не убежден в этом, если быть последовательным. Скорее мы должны согласиться с тем, что его понимание ситуации не нарушает ни разумного порядка вещей, ни известных законов механики”.

Рассматривая эту интригующую “воображаемую конструкцию”, Эйнштейн заключает, что “гравитационная масса”, определяемая притяжением между материей, и “инерционная масса”, определяющаяся движением объектов по отношению друг к другу, были одинаковыми. Таким образом, он объединяет две прежде раздельные концепции реальности в одном определении. Это изменение в концепции, в свою очередь, трансформировало представления физиков о “конкретной реальности”. Эйнштейн, однако, пришел к этому выводу, рассмотрев воображаемую “поездку” на космическом лифте, приводимом в движение фантастическим “некто” (гораздо более интересный процесс, чем рисование предполагаемых линий, векторов и уравнений).

Заметьте: хотя созданный Эйнштейном эксперимент был чистой фантазией, все в нем до ощутимости конкретно, каждая деталь – от веревок, связывающих ноги наблюдателя до крюка на крышке сундука. Как будто вместе с Эйнштейном мы можем “войти” в этот образ путешественника и почувствовать все его “мускульные” и “моторные” реакции.

Другая чарующая воображаемая конструкция, созданная Эйнштейном, подвергала сомнению наши представления о структуре Вселенной. Большинство полагает, что Вселенная – это бесконечное трехмерное “картезианское” пространство, прямыми линиями расходящееся в вечность. В противовес этим линейным построениям, Эйнштейн представил Вселенную органической формой, похожей на “моллюска”. Он задумал ряд увлекательных “мыслительных экспериментов”, подвергающих сомнению утверждение, что Вселенная безграничная и плоская.

Представьте себе существование в двухмерном пространстве. Плоские создания с плоскими приборами и с особыми плоскими жесткими измеряющими – прутиками-усиками свободно передвигаются по плоскости. Ничто не существует для них за ее пределами: все происходящее с ними и с их плоскими “объектами” – единственная для них реальность. В этой Вселенной есть место для безграничного числа идентичных квадратов, сооруженных из прутиков, их поверхность безгранична.

А теперь представим себе еще одно двухмерное бытие, но пространство на этот раз расположено не в плоскости, а на сферической поверхности. Плоские существа со своими измерителями-прутиками прекрасно подходят для обитания на такой поверхности и не в состоянии покинуть ее. Вся их обозримая Вселенная простирается исключительно на поверхности этой сферы. Способны ли эти существа измерить свою Вселенную и понять, что она плоская, и к тому же могут ли их прутики воспринять расстояние? Нет. Потому что при попытке осознать прямую линию у них получится кривая определенной длины, которую можно измерить. Точно так же у этой Вселенной есть определенная площадь, сравнимая с площадью квадрата, сооруженного из прутиков. Замечательным результатом подобного рассуждения будет признание факта определенности, но беспредельности этой Вселенной”.

Как и другие “воображаемые конструкции” Эйнштейна, образ такой Вселенной по природе своей метафоричен. Он приглашает нас вообразить себя “двухмерными существами”, скользящими по сферической Вселенной. Не будем использовать логику и сухие аналитические рассуждения, а исследуем фундаментальные и, предположительно, абстрактные принципы через наши “впечатления” и опыт. Мы, зачарованные символизмом, равно как и самой картиной, взаимодействуем с “существами” из других миров, а не с диссоциированными цифрами и фактами.

Для другой иллюстрации своей концепции “сферической Вселенной” Эйнштейн предлагает нам представить, по аналогии, слепого жука, ползущего по большому, как баскетбольный мяч, глобусу, подвешенному в пространстве. Он так огромен по сравнению с жуком, что тот воспринимает поверхность плоской и линейной. Кроме того, из-за слепоты жук не видит своих собственных следов. Итак, жук движется вперед, не сознавая, что вновь и вновь ходит по кругу. И очевидно, что это более увлекательная и ясная визуализация, чем сухие начертания математических аксиом. Для Эйнштейна такое изобретательство было самой важной частью мыслительной стратегии. Воображение становится звеном, соединяющим чисто абстрактные логические символы и слова и “хаотическое разнообразием нашего чувственного опыта”.

Итак, основные образы нам уже знакомы. Эйнштейн ведет нас дальше:

Для этой двухмерной сферической Вселенной есть трехмерная аналогия. Назовем ее трехмерным сферическим пространством.

Процесс, при котором Эйнштейн начинает с чего-то относительно конкретного и простого и затем расширяет это по нарастающей – от двухмерного пространства к сфере и, наконец, к трехмерному сферическому пространству – в НЛП называется “подстройкой и ведением”. “Подстройка” включает в себя знакомство с человеком на данном этапе, с его сегодняшними способностями и моделью мира. “Ведение” представляет собой расширение и продвижение вперед, но небольшими шагами. Каждый последующий шаг более дерзок, чем предыдущий, но не слишком широк и труден: “ведомый” вами человек не должен потеряться и смутиться.

Обратите внимание, как Эйнштейн совершает следующий шаг, расширяя свой образ пространства:

Возможно ли представить сферическое пространство?… Предположим, что мы проведем линии или протянем нити во всех направлениях из одной точки… Сначала прямые линии, расходящиеся от исходной точки, будут все дальше и дальше друг от друга, но позже сблизятся и в конце концов соединятся в “контрапункте” исходной точки. При таких условиях они пересекут все сферическое пространство. Легко увидеть, насколько трехмерное сферическое пространство аналогично подобному двумерному. Оно определенно и безгранично.

Следующий шаг – расширение образа расходящихся нитей в более сложную конфигурацию в пространстве, то, что Эйнштейн представил “моллюском”.

Еще один пример “подстройки” и “ведения” дан в лекции Эйнштейна, которую он озаглавил “Геометрия и Опыт”. Во вступлении к лекции, Эйнштейн задает провокационный вопрос:

“Можем ли мы визуалировать трехмерную Вселенную, ограниченную, но тем не менее беспредельную?

Обычный ответ на этот вопрос – “нет”, но это неправильно. Цель последующих замечаний – показать, что ответ должен быть утвердительным. Я хочу продемонстрировать, как без особых трудностей мы можем иллюстрировать теорию ограниченной Вселенной с помощью мысленной картинки, к которой, немного попрактиковавшись, скоро привыкнем”.

Эйнштейн ведет свою аудиторию через довольно интересное и достаточно специфическое упражнение на визуализацию. Содержание не суть важно для нашего исследования, а базовая стратегия включает выстраивание визуального образа стеклянного глобуса на плоской поверхности – простой трехмерной конструкции.

Эйнштейн продолжает рассуждать и просит аудиторию вообразить тень, отбрасываемую на поверхность плоским двухмерным диском, находящимся внутри шара. Далее ученый указывает, что движения диска ограничены, потому что тот заключен в шаре. Но отбрасываемая им тень может распространиться за пределы плоскости на неопределенное расстояние в зависимости от расположения источника света.

Потом аудитории предлагается представить четырехмерный шар, а в нем – трехмерную сферу (вместо диска). Следовательно, Эйнштейн заставил студентов вообразить трехмерную тень, отбрасываемую сферой на четырехмерный шар – интересный и умопомрачительный эксперимент.

Эйнштейн завершает упражнение высказыванием:

“Таким образом, опираясь на практику мышления и визуализации, данную нам Эвклидовой геометрией, мы получили ментальную картинку сферической геометрии. Мы можем без труда придать большую глубину и силу этим идеям, выстраивая особые воображаемые конструкции. И уже несложно будет представить в аналогичной манере ситуацию с эллиптической геометрией. Сегодня моей целью было только одно – показать, что способность человека визуализировать несомненно вынуждена будет капитулировать перед неэвклидовой геометрией”.

Мы видим, как Эйнштейн “подстроился” и затем “повел”, используя “картины-воспоминания” обычных объектов, а студенты конструировали необычные “образы” в своего рода “комбинаторной игре”.

Результатом этих мыслительных экспериментов случайно стало заключение Эйнштейна, что вся наша Вселенная может быть подобным образом искривленной (а не линейной, как принято было считать) и что мы, подобно слепому жуку, неспособны заметить оставленные нами следы.

“Особые воображаемые конструкции” Эйнштейна не являются ни действительно сенсорными объектами, ни абсолютно абстрактными лингвистическими или математическими символами, но чем-то средним между ними. Эти “фантазии” не предназначались для пародирования нашей реальности, они скорее помогали упростить абстрактное мышление и вызвать к жизни дремлющие в нем творческие возможности, для того чтобы осмысленная таким образом информация о внешнем мире была более полной и менее искаженной, чем при обычных вербальных и математических процессах. Такое воображение позволит создать ментальные карты, которые перенесут нас за пределы доступного нашему восприятию. Как указывал Эйнштейн,

“Атомную теорию можно наблюдать более как визуальный символ, чем действительную материальную конструкцию”.

Ментальный образ атома служит мостом между нашими богатыми, но меняющимися сенсорными опытами и точными, неабстрактными математическими аксиомами. “Визуальными символами” легче мысленно манипулировать, потому что они упрощают сложность нашего сенсорного опыта и могут быть легко переведены в математические описания. Но, с другой стороны, они также напоминают аспекты символизируемого ими сенсорного опыта, поэтому их легче интуитивно соединить с сенсорными опытами, в отличие от математических уравнений.

Наверное, самое важное в воображаемых конструкциях или “визуализирующих символах” Эйнштейна то, что они не неясные абстрактные диаграммы, а метафорические картины, куда можно проникнуть самим. Вот мы стоим напротив газовой плиты, вот спотыкаемся в “лифте”, влекомом в пространство неким воображаемым существом, а вот мы распластаны в двухмерном сферическом мире, а теперь перед нами – жук, вечно ползущий по поверхности шара.

Целью этих “особых воображаемых конструкций” было добавление “глубины и силы” нашим концепциям реальности и, в конечном счете, исследование и раскрытие того, что Аристотель называл “формальными причинами”. “Формальная причина” явления определяет сущность его характера. Формальные причины соотносятся с нашими фундаментальными определениями и восприятиями мира.

Воображение привело Эйнштейна к созданию его знаменитой теории относительности. Эйнштейн отвечал, что с шестнадцати лет ему было чрезвычайно интересно узнать, как именно выглядел бы мир, если бы он мчался верхом на световом луче со скоростью света. Это было то самое зерно, которое позднее выросло в теорию относительности. Давайте пристальнее посмотрим, как рождалась концепция относительности…