Глава 1. Демон Максвелла
Глава 1. Демон Максвелла
“War esein Gott, der diese Zeichenschrieb?” («Был ли это Бог, кто начертал эти знаки?») — спросил австрийский физик Людвиг Больцман, обращаясь к поэзии Гете, чтобы выразить свое удивление и восхищение четырьмя короткими математическими уравнениями, которые появились в уме ученого-физика.
И для его восхищения действительно были основания. В 1860-х годах шотландскому физику по имени Джеймс Кларк Максвелл удалось суммировать все, что было на тот момент известно о таких феноменах, как электричество и магнетизм, в четырех коротких уравнениях, которые были столь же важны в плане теории науки, сколь элегантны эстетически. Но Максвеллу не просто удалось в этих уравнениях суммировать то, что было уже известно. Ему также удалось предсказать явление, которое никому не пришло бы в голову связать с электричеством и магнетизмом — феномен, который не был открыт до смерти Максвелла в 1879 году.
«Как такое могло быть возможно?» — спрашивал Людвиг Больцман, современник Максвелла и его коллега в установлении важных вех теоретической физики. Каким образом содержание столь богатой и разнообразной коллекции явлений могло быть суммировано в виде столь немногочисленных и мощных символов, как те, которые содержат четыре знаменитых строчки уравнений Максвелла?
В определенном смысле это остается большой научной тайной. Ведь дело не ограничивается тем, что в нескольких словах или уравнениях содержится максимум возможного и создается карта территории, карта, которая просто и ясно суммирует всю важную информацию и тем самым позволяет нам находить дорогу. Но — здесь-то и заключается тайна — была создана карта, которая позволяет нам видеть детали территории, не известные на тот момент, когда создавалась карта!
Физика появилась как теоретическая наука, которая была одной из форм объединения различных разрозненных явлений в единую теоретическую базу. В 1687 году Исааку Ньютону удалось впервые объединить различные природные явления в единый теоретический образ, когда он представил свою теорию гравитации. Сама теория была довольно элегантной с математической точки зрения, но ее реальное значение состояло в том, что она объединяла знания о двух различных, хотя и сходных, группах явлений. В начале 1600 годов Галилей основал современную теорию движения тел на Земле — падение тел, ускорение, колебания и многое другое — и в тот же период Иоганн Кеплер сформулировал серию законов, которые описывают движение планет вокруг солнца. И Галилей, и Кеплер базировались в своих теориях на наблюдениях. Для Галилея это были его собственные эксперименты, для Кеплера — наблюдения за планетами датского астронома Тихо Браге.
Подвиг Ньютона заключался в том, что ему удалось объединить две эти теории — теорию Галилея о Земле и Кеплера о небесах — в одну теорию, которая свела воедино небо и землю. Значение имел только один принцип — гравитация — то, что пока никто не мог понять.
Теория Ньютона стала моделью для всех более поздних физиков (и оказала влияние на все отрасли науки), когда идеалом стало Великое Объединение теорий из различных научных отраслей.
Однако началом Второго Великого объединения стали лишь знаменитые уравнения Джеймса Кларка Максвелла. И если Ньютон объединил небо и землю, Максвеллу удалось соединить электричество и магнетизм.
Весь современный научный взгляд на Вселенную базируется на признании определенных природных сил — гравитации, электричества, магнетизма и двух других, которые действуют в мире атомов. Эти силы описывают, каким образом различные материальные тела взаимодействуют друг с другом. А истинный смысл заключается в том, что не существует в природе иных сил помимо тех, что перечислены выше. Все нам известное может быть описано через эти силы и оказываемые ими эффекты.
И потому открытие, совершенное в прошлом веке, имело огромное значение: оказывается, существует связь между двумя этими силами — электричеством и магнетизмом. В 1820 году датский ученый Ганс Христиан Эрстед обнаружил, что магнитная игла отклоняется электрическим током. До этого момента никому не приходило в голову, что существует связь между электричеством и магнетизмом — двумя хорошо известными явлениями. В 1831 году Майкл Фарадей доказал и обратное теории Эрстеда — что электрический ток, который возникает в проводнике, подвергается действию магнитных полей — мы называем это электромагнитной индукцией. Когда Фарадея спросили, какую практическую пользу может иметь его открытие, он ответил: «А какая польза может быть от ребенка?».
Джеймсу Кларку Максвеллу было всего несколько месяцев от роду, когда Фарадей открыл индукцию. 30 лет спустя Максвеллу удалось инициировать Второе Великое объединение в физике, когда его уравнения объединили в себе достижения Фарадея, Эрстеда и многих других.
Максвелл сознательно работал с использованием принципа аналогии. Он создавал теории об электрических и магнитных явлениях, воображая вихри в пространстве, которые представляли собой поля, вызывающие электрические и магнитные явления. Он сознательно использовал простые образы, которые можно было отбросить, когда он начинал понимать явление достаточно хорошо, чтобы выразить его в математической форме. Как написал Максвелл, начинать необходимо с «упрощения и сокращения результатов предыдущих исследований до такой формы, когда их может охватить ум».
Размышляя о вихрях (что впоследствии превратилось в гипотетическую модель, созданную из небольших шестеренок), Максвелл пришел к выводу о том, что если проводить механическую аналогию между электричеством и магнетизмом, то необходимы дополнительные небольшие вихри. Эти новые вихри не соответствовали ни одной известной на тот момент концепции — но были необходимы для того, чтобы ментальные построения обрели смысл, и карта стала как можно более аккуратной.
Когда Максвелл подсчитал скорость, с которой должны были бы распространяться в пространстве эти гипотетические крошечные вихри, он обнаружил, что они распространяются со скоростью света. Это было странно, так как до тех пор никому не приходило в голову, что свет каким-либо образом связан с электричеством и магнетизмом. Но Максвелл обнаружил, что свет представляет собой электромагнитное излучение — подвижные электрические и магнитные поля, которые распространяются по Вселенной, чередуясь в вечном движении под нужными углами, в направлении своего рассеивания. Поразительная картина, объясняющая природу света — вопрос, который ученые обсуждали в течение столетий.
Таким образом, уравнения Максвелла описывают не только то, для описания чего они были созданы, но также — в качестве бонуса — и сам свет. И выяснилось, что у света есть целая плеяда «родственников»: радиоволны, Х-лучи, инфракрасная радиация, микроволны, гамма-лучи и ТВ-волны (первые из которых были открыты Генрихом Герцем в 1888 году, лишь через 9 лет после смерти Максвелла).
Следовательно, материальное значение уравнений Максвелла оказалось огромным.
Каким бы был 20 век без радио, рентгеновских лучей, телевидения и микроволновок? Лучше — возможно, другим — совершенно точно.
Как сказал Генрих Герц об уравнениях Максвелла: «Нельзя изучать эту удивительную теорию, не испытывая по временам такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом — кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в свое время в них было заложено».
Как удалось Максвеллу гипотетически, используя аналогии, прийти к тому, что никто еще не открыл? Именно этот вопрос на самом деле имел в виду Людвиг Больцман, когда спрашивал, не были ли уравнения Максвелла написаны Богом.
В каком-то смысле на этот вопрос ответил сам Максвелл, умирая от рака. Когда к нему пришел профессор Ф. Дж. А. Хорт, которого он знал еще по Кембриджу, Максвелл сказал, не зная ничего о высказывании Больцмана: «Я чувствую, что совершенное мною на самом деле совершено кем-то более великим, чем я сам».
И подобное предположение — о том, что многие научные идеи возникают в уме, не контролируемые сознанием — было выказано Максвеллом уже не в первый раз. Вскоре после смерти своего отца в 1856 году он написал стихотворение о «мощи и мыслях внутри нас, которых мы не знаем до тех пор, пока они не поднимутся сквозь течение сознания — оттуда, где секретно обретается наша сущность». Максвелл увидел свет в своих уравнениях не благодаря сознательному действию: «Когда Воля и Разум молчат, мысли приходят и уходят».
Подобные мысли вовсе не являются необычными для прирожденных великих ученых, которые очень часто говорят о подсознательных или даже мистических явлениях, которые легли в основу их теорий. И в этом смысле уравнения Максвелла действительно были написаны не Максвеллом. Это сделал кто-то внутри него — гораздо более великий, нежели он сам.
Другие физики с тех пор пытались повторить подвиг Ньютона и Максвелла, которым удалось объединить различные теории о различных явлениях. Но пока не одному из них еще не выпал подобный джек-пот унификации.
Безусловно, в этом веке Альберту Эйнштейну удалось развить новые идеи, базирующиеся на идеях Ньютона и Максвелла, но его восхитительно красивая теория относительности, описывающая движение и гравитацию, не привела к объединению каких-либо природных сил.
С другой стороны физики, изучающие мир атомов, открыли две фундаментальные природные силы в дополнение к гравитационным и электромагнетическим: сильное и слабое взаимодействие, существующие на атомном и субатомном уровне.
Слабые взаимодействия обнаруживаются только при процессах радиоактивного распада. Сильные взаимодействия проявляются только в атомном ядре. В 60-е годы прошлого века Абдус Салаам и Стивен Вайнберг объединили теории слабых взаимодействий и электромагнетизма, что привело к пониманию их как одной силы. В 70-е годы другим физикам удалось показать, что сильные взаимодействия также могут рассматриваться как вариации этого нового «электро-слабого взаимодействия». Таким образом, в этой картине появился новый порядок — но на самом деле все, что совершили физики — это вписали две вновь открытые силы в систему уже существующих. Эту картину вполне можно было бы считать Великим Объединением — но в ней все еще отсутствует критически важная часть, а без нее окончательное объединение будет невозможным. И эта отсутствующая часть — гравитация.
В 80-е годы появилась теория об образованиях, которые получили название «суперструны». Она вызвала большой интерес, так как впервые появились основания надеяться, что удастся объединить гравитацию (теория относительности Эйнштейна) и теории электромагнетизма, а также сильные и слабые взаимодействия (ядерная физика и физика частиц). Суперструны включают в себя крошечные вибрирующие элементы, которые выступают в качестве строительных кирпичиков для всей материи Вселенной. Но это Третье Великое объединение оказалось дорогой, идти по которой было очень сложно — и в любом случае гораздо менее интересно, чем следовать первым двум объединенным теориям.
Великий вклад Исаака Ньютона заключался в том, что ему в конечном итоге удалось объединить землю и небеса; вклад Максвелла состоял в том, что он объединил такие повседневные явления, как магнетизм, электричество и свет. Теория суперструн, однако, не имеет ничего общего с нашей повседневной жизнью: она действует в экстремальных и странных для нас условиях, которые не являются обычными — и эти условия настолько далеки от возможностей современной физики, что не стоит в скором будущем ожидать каких-либо экспериментов в этой области.
Сегодня, несмотря на громадные суммы, которые тратятся на сложные устройства — к примеру, Европейской организацией ядерных исследований неподалеку от Женевы — никто на самом деле не верит, что Третье Великое объединение — теория, которая сможет объединить все силы природы — состоится в обозримом будущем. Можно много говорить о том, что её создание уже не за горами, но как показывает теория суперструн, даже если она появится, возможно, она не сможет сообщить нам много нового в дополнение к тому, что мы уже используем в своей повседневной жизни. И это весьма разочаровывает.
Тем не менее в 80-е годы прошлого века был сделан целый ряд драматических и удивительных прорывов, которые увели физику прочь от тех тенденций, которые доминировали в ней в течение 20 столетия.
На протяжении большей части прошлого века физики уходили все дальше от нашей повседневной жизни, от явлений, которые мы можем наблюдать собственными глазами. Все большие и большие ускорители, и все более сложные аппараты создавались для изучения причудливых эффектов, которые, по уверениям физиков, могу пролить свет на то, каким образом можно объединить теорию гравитации с теориями, разработанными на атомном уровне. Пока успеха не достигнуто.
В 80-е годы прошлого века целый ряд новых теорий — теория хаоса, фракталов, теория самоорганизации и теория сложности — снова позволили осветить нашу повседневную жизнь. Физики могут понять множество мелких деталей, проводя эксперименты на дорогостоящих исследовательских площадках — но они вряд ли смогут объяснить обычные явления; наука сегодня испытывает проблемы с тем, чтобы ответить на вопросы, подобные тем, которые задают дети — вопросы о форме, в которой предстает перед нами природа, о деревьях, облаках, горных хребтах и цветах.
Теории хаоса и фракталов привлекли большой интерес, так как в них содержатся совершенно новые взгляды, и они несут в себе полностью новые эстетические формы, особенно если говорить о фракталах в компьютерной графике.
Но фактически самым интересным аспектом этих новых направлений является то, что в них содержится серия важных концептуальных инноваций, которые могут нас привести к Третьему Великому объединению. Правда, это будет не теория, которая объединяет гравитацию и теорию атома, а соединение науки и повседневной жизни. Теория, которая с одинаковым успехом сможет объяснить возникновение Вселенной и повседневного сознания, теория, которая объяснит, каким образом концепция смысла, к примеру, соотносится с концепцией черных дыр.
Подобное объединение по своей важности легко будет соответствовать тому, что сделали Ньютон и Максвелл. Есть множество указаний на то, что так и будет. И все это благодаря задаче, которая была решена в 1980-е годы. Эта задача была предложена Джеймсом Кларком Максвеллом в 1867 году — задача демона Максвелла.
«Призрак бродит по науке — призрак информации». Этими словами, намекающими на «Коммунистический манифест», физик Войцех Зурек открыл в 1988 году встречу в Санта Фе, Мексика. На этой встрече собрались 40 ведущих мировых физиков и несколько математиков, чтобы обсудить «Сложность, Энтропию и Физику информации».
Зурек говорил о ряде «глубоких аналогий» между очень различными полюсами физики — и между физикой и каждодневной жизнью. Аналогии между тем, как работает паровой двигатель, и теорией коммуникации, между измерением атомных явлений и теорией познания, между черными дырами Вселенной и уровне беспорядка в чайной чашке, между вычислениями в компьютере и основами математики, между сложностью биологических систем и расширением Вселенной.
Когда тот же состав физиков снова собрался на следующую конференцию двумя годами спустя, 79-летний американский физик Джон А. Вилер открыл собрание. В 1939 году Вилер создавал теорию расщепления ядра с Нильсом Бором. Именно Вилер дал название самому странному феномену эйнштейновской теории гравитации — черным дырам. Вилер, которому нравилось играть роль пророка, был большим специалистом во многих областях физики, которые обсуждались на встрече.
Сначала низенький кругленький человечек с приятным, постоянно счастливым лицом прошел через небольшую, но исключительно квалифицированную группу ученых, собравшихся в аудитории института Санта Фе 16 апреля 1990 года. Затем он заговорил: «Это не просто еще одна встреча. К концу недели я ожидаю, что мы сможем узнать, каким образом сложена Вселенная».
Затем Вилер перешел к тому, что поставил под сомнение несколько «священных коров» физики. «Не существует пространства, и не существует времени,» — сказал он, начиная свою атаку на концепцию реальности. — «Там» нет никакого «там»…
«Идея одной Вселенной нелепа: Мир. Мы все являемся участниками и наблюдателями во Вселенной — и это чудо, что у нас формируется одинаковый взгляд на нее. Но к концу недели мы можем понять, каким образом создать все это из ничего», — сказал Вилер небольшой группе ученых.
С этим согласились не все. Та неделя не изменила нашего взгляда на Вселенную, но у всех появилось ощущение, что пришло время еще раз все обдумать. Ведущие ученые создали документы, в которых были тщательно проверены все фундаментальные идеи физики.
«Я хочу поговорить о том, о чем не говорится в учебниках, — объяснил Эдвин Т. Джейнс, еще один американский ученый-коротышка, который в 50-е годы сформулировал новые теоретические описания термодинамики, теорию, которая заложила основы энтропии и информации — центральных вопросов конференции 1990 года. — Или, возможно, говорится — в том смысле, что все формулы в учебниках есть, но они ничего не говорят нам о том, что означают эти формулы, — сказал Джейнс. — Математика, которую я намерен использовать, намного проще, чем то, на что все мы способны. Но проблемы носят не математический, а концептуальный характер».
Во время перерыва Томас Кавер, математик из Стэнфордского университета, спросил: «Все встречи физиков такие, как эта? Это же как съесть конфетку!»
На самом деле эта встреча была исключением. Подобные открытые встречи действительно случаются редко. Здесь можно было услышать тот же вопрос, который создавал вам проблемы с учителями в школе: «Что это значит? Как это понимать?». Здесь можно было слышать, как лучшие умы восклицают: «С чего бы моему автомобилю интересоваться тем, что я знаю о мире?»
Казалось, что физика получила новое рождение. И все это из-за первой серьезной темы, которая была поднята, когда Вилер задал тон всей встрече: демон Максвелла.
Тепло. Если человечество и располагает знаниями о чем-то, то это о тепле. Тепло тела. Летнее тепло. Нагреватели. Но до середины 19 века физики не могли дать точное определение, что же такое тепло. В Древней Греции Аристотель определял огонь как независимый и необъяснимый элемент, как и воздух, земля и вода, и тепло как одно из неотъемлемых качеств, комбинация которых определяет эти элементы.
В начале 1800-х годов превалировали сходные с этой идеи: тепло рассматривалось как особая субстанция, термическая материя, тепло, которое окружает все тела. Но точное определение того, что такое тепло, стало настоятельной потребностью после того, как Джеймс Ватт изобрел новый эффективный паровой двигатель в 1769 году, что не только привело к возможности индустриализации, но и породило многочисленные дискуссии относительно машин на основе бесконечного движения. По мере того как паровой двигатель продвигался по Европе, ученым попросту пришлось прийти к пониманию термодинамики.
Первый решительный вклад был сделан в 1824 году французом Сади Карно, который под влиянием скорее всего своего отца Лазаря Карно, имевшего опыт в сфере инженерии тепловых машин, а не в результате знания физических теорий, сформулировал описания паровых двигателей, которые десятилетиями позже стали описаниями первого и второго законов термодинамики.
Первый закон термодинамики касается общего количества энергии в мире. Это количество является постоянным. Энергия не появляется и не исчезает, когда мы ее «потребляем». Мы можем конвертировать энергию угля в горячий пар или нефти в тепло — но задействованная при этом энергия просто переходит из одной формы в другую.
Это входит в противоречие с повседневным значением слова «энергия», которое мы применяем по отношению к тому, что мы потребляем. Мы говорим: «Страна имеет определенный уровень энергопотребления». Но на самом деле это не имеет смысла, если брать во внимание определение энергии, которое дают физики. Страна переводит одну форму энергии в другую. Нефть в тепло, к примеру. Но общее количество энергии остается неизменным.
Однако наш повседневный язык вовсе не настолько глуп, так как очевидно: когда мы обогреваем свои дома, нечто все же расходуется — вернуть обратно нефть нам не удастся.
Так что, когда мы «потребляем» энергию, что-то все же происходит, даже если первый закон термодинамики и утверждает: количество энергии в мире — величина постоянная, и энергия не может быть использована. Ведь второй закон термодинамики объясняет, что энергия может быть использована.
Второй закон термодинамики говорит нам, что энергия может появляться в более или менее пригодной для использования форме. Некоторые формы энергии позволяют нам проделать огромное количество полезной работы с помощью машины, которая может иметь к ней доступ. Мы можем выполнять такие виды работы, как обогревание жилища, обеспечение энергии для движения поезда или работы пылесоса.
Энергия существует во многих формах, и несмотря на то, что количество этой энергии остается постоянным, формы, в которых она представлена, определенно не остаются таковыми. Некоторые формы энергии могут применяться для выполнения различных видов полезных работ. Одна из наиболее полезных форм энергии — это электричество. Другие формы не могут быть использованы с такой же легкость. К примеру, тепло, как правило, не применяется для чего-либо за исключением обогрева.
Но, разумеется, тепло можно применять и для решения более специфических задач, нежели просто «обогрев». Тепло может служить в качестве движущей силы парового локомотива. Но снабжать локомотив энергией за счет тепла будет не столь же эффективно, как используя электричество в качестве источники энергии. Если применять тепло, то требуется большее количество энергии, причем эта энергия будет отличаться низким качеством.
Паровые двигатели заставили людей осознать, что энергия может присутствовать и при этом не быть доступной. Тепло — это форма энергии, которая не отличается столь же высокой доступностью, как электричество. Чтобы заставить поезда двигаться, нам потребуется конвертировать большее количество тепловой энергии. Мы не потребляем при этом больше энергии, так как потребить энергию невозможно, что бы мы ни делали и ни говорили. Но при использовании энергии в форме тепла тратится понапрасну гораздо большая ее часть, нежели при использовании ее в форме электричества. Другими словами, конвертируется больше энергии.
Очень точно это описывает второй закон термодинамики. Он говорит нам, что каждый раз, когда мы конвертируем энергию («потребляем» энергию, как мы привыкли говорить), она становится менее доступной — с ее помощью мы можем сделать меньше работы. Дело обстоит именно так, говорит нам второй закон: любая конверсия энергии приводит к тому, что энергия становится менее доступной, чем была до этого. (Есть несколько очень специфических случаев, когда энергия может быть конвертирована с возможностью обратной конверсии, но их можно встретить в основном в учебниках, а не в обычной жизни).
Энергия в мире — величина постоянная, но она становится все менее и менее ценной — менее и менее доступной — по мере того, как мы ее используем все больше и больше.
Итак, законы термодинамики утверждают, что энергия — это постоянная величина, но она становится все менее и менее доступной. В конце 19 века эти два закона привели к тому, что люди начали верить: мир ожидает зловещее будущее. Ведь чем больше энергии мы конвертируем, тем менее доступной она становится, и в конце концов вся энергия превратится в тепловую — наименее доступную из всех форм.
Люди назвали это «тепловой смертью» Вселенной: вся энергия в конце концов превратится в нечто однородное и едва теплое, и из подобной энергии уже нельзя будет извлечь никакой пользы.
Практика использования паровых двигателей ясно показывает, что тепло можно использовать для выполнения работы только в том случае, если присутствует разница — разница между двумя температурами. Только потому, что бойлер парового двигателя значительно горячее, чем окружающая температура, он может привести поезд в движение. Полезную работу за счет использования тепла можно получить только в том случае, если горячее удастся снова охладить. Но когда мы охлаждаем что-то горячее до температуры окружающей среды, это неминуемо будет иметь последствия: мы не сможем разогреть это снова без использования энергии. Как только ваш кофе остывает (после того, как вы нагрели его с помощью электричества, на котором работает ваша плитка), оно никогда не нагреется снова само по себе (пока вы снова не включите электричество). Разница в уровне температур уничтожается необратимо.
Таким образом, второй закон термодинамики говорит нам, что мы живем в мире, где все стремится к подобию, однородности, серости и умеренной температуре — к тепловой смерти Вселенной. Если бы дело обстояло не так, профессия инженера была бы гораздо более счастливой. В конце концов, в мире предостаточно энергии, и она никуда не исчезает. Мы могли бы снова и снова использовать одну и ту же энергию. Мы могли бы без всякого промедления создать машины на принципе вечного движения. Но извините, так не получится. Это говорит нам второй закон термодинамики.
В 1859 году прусский физик Рудольф Клаузевиц дал этому явлению название — энтропия. Энтропия — это мера, определяющая количество доступной энергии. Чем больше энтропия, тем меньше энергии мы можем использовать. Два закона термодинамики можно выразить другим способом: согласно первому закону, энергия постоянна, а согласно второму — энтропия постоянно возрастает. Каждый раз, когда мы конвертируем энергию, энтропия системы, в которой конвертируется энергия, растет.
Но это так и не объясняет, что же такое на самом деле тепло — зато частично объясняет то, почему тепло является настолько особенной формой энергии: в тепле много энтропии, намного больше, чем в электрическом токе.
Но вскоре развилось и понимание того, что такое тепло. Самый значительный вклад в это внесли Джеймс Кларк Максвелл и Людвиг Больцман. Они осознали, что старая идея может быть сформулирована более точно: идея о том, что тепло является одной из форм движения внутри материи. Предпосылкой для этого стала теория атомов — идея о том, что материя состоит из огромного числа крошечных частиц, которые находятся в постоянном движении.
Атомная теория в конце прошлого века не была еще признана повсеместно — но сегодня ясно, что вся материя состоит из атомов, которые находятся в постоянном движении. Атомы объединяются в небольшие группы — молекулы, и каждый вид материи состоит из определенного типа молекул, созданных из различного числа существующих 92 видов атомов. Но существуют различные виды движения. Твердые тела поддерживают постоянную форму, несмотря на то, что их молекулы находятся в движении; жидкости более податливы и принимают форму дна того сосуда, в котором они находятся; газы полностью мобильны, заполняя весь контейнер. Существуют три состояния, или фазы, в которых может находиться материя: твердое, жидкое и газообразное. (На самом деле есть еще и четвертое состояние — плазма, в котором атомы разбиваются на частицы. В повседневной жизни это состояние материи знакомо нам в качестве огня).
Разница между этими тремя состояниями не настолько велика, как можно было бы подумать. На примере одного вещества, H2O (которое состоит из атома кислорода — О- и атомов водорода — Н —, последних содержится два на молекулу) мы знакомы со всеми тремя состояниями вещества: лед, вода и пар. При низких температурах молекулы передвигаются очень медленно. Структура поддерживается в постоянной форме. Если температура немного повышается, молекулы начинают двигаться быстрее и могут меняться местами друг с другом, но они все еще держатся вместе. При температуре выше 100 градусов Цельсия все молекулы разделяются и начинают свободно перемещаться в форме пара — как газ. Переход между этими тремя состояниями или фазами носит название «фазовый переход». При всех движениях, которые совершаются при повышении тепла, молекулы движутся хаотично, туда-сюда. Движение, вызванное выделением тепла, не имеет направления.
Но тепло — это не единственная форма движения материи: электрический ток также является проявлением движения. Но в случае электричества не все молекулы движутся беспорядочно. У электрического тока имеется одна составляющая атомов молекулы — отрицательно заряженный электрон — который движется в определенном направлении. При возникновении электрического тока наблюдается больше порядка, чем при хаотическом тепловом движении. Аналогично атмосферный ветер является иным, нежели тепло, проявлением: огромное количество молекул движется в определенном направлении, вместо того, чтобы просто топтаться на месте друг вокруг друга. Вот почему ветряные мельницы являются разумным способом производства электричества, в то время как атомные и работающие на нефти электростанции не столь элегантны — ведь на них применяется топливо, которое нагревает воду, движущую турбины. Обходной путь с использованием горячей воды — это высокая цена, которую приходится платить за излюбленные игрушки инженеров.
В любом случае мы многое можем понять о материи, если поймем, что она состоит из множества мельчайших компонентов, которые находятся в той или иной стадии движения. Движение подразумевает использование определенного количества энергии, либо упорядоченной, как в случае с ветром, либо неупорядоченной, как в случае с теплом. Ветер более полезен с точки зрения генерирования электрического тока, нежели тепло, как раз потому, что у него есть направление движения. Но тем не менее в тепле содержится масса энергии — просто ею тяжелее воспользоваться, так как она содержится в настолько беспорядочном движении.
Температура — это выражение типичной скорости, с которой движутся молекулы. То, что мы подразумеваем под теплом и измерением температуры — это не что иное, как неупорядоченное движение.
Значит ли это, что все молекулы газа движутся с совершенно одинаковыми скоростями? Как им удается угнаться друг за другом, когда мы включаем обогреватель?
Именно эту дилемму и удалось разрешить Максвеллу.
Впервые в истории физики он ввел статистическую концепцию. Не все молекулы движутся с одинаковой скоростью. У некоторых из них огромная скорость, у других намного меньшая. Но их скорость имеет характерное распределение — распределение Максвелла-Больцмана, которое утверждает: у молекул есть определенная средняя скорость, но они проявляют вариации в отношении этой средней скорости. Если среднее значение является высоким — температура будет высокой. Если среднее значение низкое — температура низкая.
В материи с заданной температурой молекулы проявляются со многими различными скоростями. У большинства из них скорость близка к среднему значению. В горячей материи можно обнаружить больше молекул с высокими скоростями, чем в холодной материи. Но в холодной материи можно обнаружить скоростные молекулы, и в горячей — молекулы, которые почти впали в летаргию.
Это дает нам возможность понять процесс испарения. Чем выше температура, тем больше будет молекул с высокими скоростями. Если представить себе процесс испарения в виде крошечных молекул, которые как ракеты отправляются в космос, то мы увидим: чем выше температура жидкости, тем больше молекул отправятся в путь.
Но у статистического распределения скоростей есть и интересное последствие: для каждой отдельно взятой молекулы невозможно определить, к какой температурной группе она относится. Другими словами, каждая индивидуальная молекула не имеет представления, частью какой температурной составляющей она является.
Температура — это концепция, которая приобретает значение только в том случае, если у нас имеется сразу много молекул. Было бы нонсенсом спрашивать каждую молекулу, какова ее температура. Ведь молекула этого не знает: все, что ей известно — это скорость, причем только ее собственная.
Или все же знает? Через какое-то время молекула газа сталкивается с другими молекулами и приобретает определенное «знание» о том, какова их скорость. Именно поэтому материя поддерживает ровную температуру: молекулы сталкиваются друг с другом и обмениваются скоростями: достигается состояние баланса. Когда мы нагреваем материю, мы можем делать это снизу. Результирующая высокая скорость быстро распределится среди всех молекул.
Вклад Максвелла заключался в том, что он основал учение о законах, управляющих подобным поведением. Движение и столкновения крошечных молекул могут быть красиво описаны по старым законам Ньютона — это движение и столкновения, в которых участвуют миллиарды шаров. Оказалось, что если у вас есть достаточное количество шаров (а в воздухе просто ужасно много молекул — приблизительно 1,000,000,000,000,000,000,000,000,000 [1027] молекул в обычной комнате), результатом действия ньютоновских законов движения становятся статистические законы материи, с которыми мы уже знакомы: правила для температуры, давления и объема, правила уменьшения доступности энергии тепла.
Но в этой картине есть кое-что странное. Законы Ньютона для миллиардов шаров и другие механические явления — это простые и красивые законы. Они описывают обратимые явления — эти явления могут быть обращены во времени. Во Вселенной Ньютона время может течь в обратную сторону — а мы даже не заметим разницы. Но в мире термодинамики поведение шаров связано с такими причудами, как второй закон термодинамики. Если смешать горячее и холодное, разделить их снова будет невозможно. Когда ваш кофе остыл, уже произошло нечто необратимое.
Толпа «высокоскоростных» молекул смешивается с толпой «низкоскоростных»: шарики сталкиваются друг с другом и приобретают новую среднюю скорость. Это позволяет раз и навсегда уравнять разницу: вы не сможете отделить молекулы, которые ранее имели высокую скорость, и те, которые ранее двигались на низкой скорости, так как каждая индивидуальная молекула не имеет ни малейшей мысли о том, частью какой температуры она являлась в тот или иной момент.
Как только молекулярная колода была перетасована, вы не сможете вернуть ее в прежнее состояние.
Эту проблему удалось точно сформулировать Людвигу Больцману примерно в период смерти Максвелла, в 1879 году: не существует высокой вероятности того, что законы Ньютона заставят все молекулы внезапно вернуться к своей первоначальной скорости перед смешиванием. На самом деле — это очень маловероятно. Со временем молекулы смешиваются все больше и больше. Холод и жар уравниваются до тепла.
Вот почему растет энтропия. Энтропия — это выражение недоступности данного вида энергии. Если эта энергия находится в форме тепла — измеряемого как температура — использовать ее можно только в том случае, если смешать что-то горячее с чем-то холодным (горячий пар и холодный окружающий воздух, которые смешиваются в паровом двигателе, к примеру). Но как только вы смешаете эти субстанции, вы уже не сможете их разделить и ожидать, что процесс будет работать снова.
Причина этого — возникающее выравнивание, и это выравнивание является необратимым. Это и есть причина того, что энтропия Вселенной возрастает. Необратимо.
Больцману удалось достичь понимание сущности тепла и понимания того, что вскоре начали рассматривать как самый фундаментальный закон природы: второй закон термодинамики. В определенном смысле это еще и понимание того, что на самом деле означает течение времени: молекулы обмениваются скоростями, их движение уравнивается, они обретают среднюю скорость — баланс. Это и есть разница между «тогда» и «теперь» — мы движемся от разницы к однообразию.
Но многие физики, современники Больцмана, критиковали его точку зрения. Мы не можем, говорили они, вывести подобный необратимый и безотзывный закон, как закон термодинамики, из законов Ньютона о движении и кинетике — физики бильярдного стола! Ведь обратимость придает картине мира Ньютона такое могущество: все уравнения можно обернуть во времени, все процессы суть одно и то же, движутся ли они вперед или назад.
На основании практически любого опыта, который мы получаем из нашей повседневной жизни и о котором можем упомянуть, мы можем заявить, что многие вещи в этом мире просто необратимы: когда что-то бьющееся падает на пол, оно не может восстановиться само по себе; тепло поднимается вверх по печной трубе, а беспорядок на столе со временем становится только еще беспорядочнее. Время проходит — и все гибнет. Все ломается. Вы когда-нибудь видели, чтобы разбитая тарелка вновь восстала из обломков?
Но это не интересовало критиков Больцмана, ведь теории Ньютона составляли саму суть физических теорий, и картина, в которой что-то безвозвратное выводилось из возвратного, необратимое из обратимого, выглядела для них в корне неверной. Физики того времени говорили, что Больцман неправильно понимает время.
Теория, согласно которой материя состоит из атомов, не была целиком принята учеными до рубежа 19 века. Теоретическая основа всех идей Максвелла и Больцмана о тепле как статистическом феномене огромных конгломератов молекул, подверглось жесткой критике. И так было вплоть до первой декады 20 века, когда такие физики, как Эйнштейн, Томсон и Бор установили раз и навсегда, что атомы действительно существуют.
В 1898 году в предисловии к книге о теории молекулярного движения в воздухе Больцман написал, что он убежден: «эти атаки базируются только на непонимании» и что он осознает: «он является всего лишь человеком, который пытается бороться с потоком времени».
Когда Больцману исполнилось 62 года, в 1906 году, он все еще не был чествуемым героем, несмотря на свой огромный вклад в развитие физики. Его мучили депрессии и боязнь чтения лекций. Он вынужден был оставить профессорскую деятельность в Лейпциге и оказаться в собственной научной изоляции.
В предыдущем году он написал в одной из популярных книг: «Я могу сказать, что остался единственным из тех, кто всем сердцем принимает старые теории; по крайней мере единственный, кто готов бороться за них изо всех сил».
Но силы его истощились. Во время летнего отдыха возле Триеста 6 сентября 1906 года Людвиг Больцман покончил жизнь самоубийством.
Объединение принципов обратимости в возвышенных уравнениях Ньютона и необратимости повседневной жизни не стало задачей Больцмана, несмотря на тот факт, что именно с этой проблемой столкнулся Максвелл в 1867 году, когда он ощутил своего непослушного демона, который на протяжении более чем столетней дискуссии, смог осветить и объяснить ту самую сложность, которая оказалось для Людвига Больцмана необратимой.
«Демон Максвелла жив до сих пор. После более чем 120 лет сомнительной жизни и по меньшей мере двух провозглашенных смертей, этот причудливый персонаж кажется более живым, чем когда-либо», — написали два американских физика, Харви Лефф и Эндрю Рекс в 1990 году, когда они опубликовали книгу об исторических источниках, иллюстрирующих историю демона Максвелла. Эту историю два физика считают незаслуженно забытой главой истории современной науки. «Демон Максвелла — это не более чем простая идея, — писали они. — Тем не менее он бросал вызов многим из лучших научных умов, и его литературная деятельность охватывает термодинамику, статистическую физику, теорию информации, кибернетику, пределы вычислений, биологические науки, историю и философию науки».
В 1867 году физик Питер Гатри Тейт написал своему близкому другу и университетскому приятелю Джеймсу Кларку Максвеллу, спрашивая его, не пробежится ли тот критическим взглядом по рукописи об истории термодинамики до ее публикации. Максвелл ответил, что будет счастлив это сделать, несмотря на то, что с подробностями истории термодинамики он незнаком. Но он, возможно, мог бы обнаружить одну или парочку дыр. После чего Максвелл продолжил свое письмо, указывая на одну огромную дыру в работе, которой он еще даже не видел: и эта дыра заключалась во втором законе термодинамики.
Идея Максвелла была проста: в контейнере с двумя отделениями — А и В — содержится газ. В перемычке, которая разделяет эти два контейнера, имеется дыра, которая может открываться и закрываться без приложения каких-либо усилий, другими словами, путем суперскольжения.
«А теперь представьте себе определенную сущность, которая узнала пути и скорости всех молекул посредством простого осмотра, и которая не может выполнять никакой другой работы, кроме как открывать или закрывать дыру в перемычке, пользуясь способом скольжения без массы», — написал Максвелл Тейту. Далее он продолжил описание того, как это маленькое существо открывает отверстие каждый раз, когда быстрая молекула из левой камеры направляется к нему. Когда медленная молекула из той же камеры приближается к отверстию, оно остается закрытым.
Таким образом из левой камеры в правую могу попасть только быстрые молекулы. И наоборот, только медленные молекулы из правой части камеры могут попасть в левую.
Результатом станет то, что в правой части камеры соберутся быстрые молекулы, а в левой — медленные. Количество молекул в обеих камерах остается тем же, но их средняя скорость меняется. В правой камере температура повышается, в то время как в левой она снижается. Разница создана. «И тем не менее не было выполнено никакой работы, — пишет Максвелл. — Был задействован только интеллект очень наблюдательного и ловкого существа».
Максвелл действительно обнаружил дыру во втором законе термодинамики: умное маленькое существо может создавать жар из обычного тепла, не производя при этом никакой работы. «Говоря коротко, — писал Максвелл, — если тепло — это движение конечных порций материи и если мы можем приложить к этим порциям инструменты, которые позволят работать с ними раздельно, то мы сможем воспользоваться преимуществом разницы движений различных пропорций для восстановления равномерно горячей системы, исходя из разницы температур или движения больших масс. Мы не можем этого сделать лишь потому, что недостаточно умны».
Мы слишком велики и неуклюжи, чтобы обойти второй закон термодинамики. Но если бы мы были немного более ловкими и наблюдательными, мы смогли бы разделить молекулы в воздухе нашей кухни, направив их в холодильник и в духовку — и это бы не отразилось в наших счетах за электричество.
Три года спустя Максвелл писал лорду Райли, другому физику: «Мораль такова: Второй закон термодинамики верен настолько же, насколько и утверждение о том, что если вылить в море какой-то объем воды, то мы никогда не сможем вновь получить тот же ее объем обратно».
Этим Максвелл хотел показать, что второй закон термодинамики имеет только статистическую ценность: это закон, который применим на нашем уровне, а не для крошечных и очень умных существ. Когда мы описываем мир таким, как мы его знаем, в форме очень больших скоплений молекул, закон увеличения энтропии и снижения доступности энергии действительно применим. Но если бы мы были чуть более умными, мы смогли бы получить тепло из холода, просто открывая окно, когда быстрые молекулы залетали бы в комнату по пути от холодного ночного воздуха (хотя это и происходило бы довольно редко), или когда медленные молекулы хотели бы покинуть комнату.
Вечный двигатель, основанный лишь на интеллектуальном наблюдении.
Идею о маленьком создании Максвелл опубликовал в своей книге «Теория тепла» в 1871 году, и три года спустя другой физик, Уильям Томсон, назвал это существо демоном — не злобной сущностью, а «разумным существом со свободной волей и достаточным уровнем тактильной организации и восприимчивости, чтобы наблюдать отдельные молекулы материи и оказывать на них влияние».
Демон Максвелла дразнит нас: причина, по которой нам приходится работать, чтобы получить тепло зимой, заключается в нашей собственной неадекватности, а не в неадекватности Вселенной. Все приходит в беспорядок и замешательство только по той причине, что мы слишком велики и неуклюжи, чтобы манипулировать отдельными компонентами материи.
Максвелл таким образом указал на разницу между описанием беспорядочного движения отдельных молекул туда-сюда — как доказано в возвышенных уравнениях Ньютона — и описанием конечных порций материи — как доказано представлением о тепловой смерти в термодинамике — которая через несколько лет приведет к реальной смерти Больцмана.
Термодинамика — это статистическая теория, которая говорит нам о мире, который мы можем узнать, но не можем получить, так как мы недостаточно умны. В действительности между различными формами энергии разницы нет — они одинаково доступны тому, кто знает, как ими пользоваться.
Тот факт, что энергия становится все более и более недоступной, следовательно, связан с нашим описанием мира и теми возможностями для вмешательства, которые дает нам это самое описание.
В девятом издании энциклопедии «Британика» 1878 года Максвелл написал о возрастающей недоступности энергии, ее рассеивании, о том, что она просачивается сквозь наши пальцы, о росте энтропии.